Product data sheet

1. General description

The NMUX1237 is a single-pole double-throw analog switch with a digital select input (S), two independent inputs/outputs (Y0 and Y1) and a common input/output (Z). The digital select input (S) supports 1.8 V logic thresholds independent of operating voltage. This feature enables compatibility in applications that combine low voltage digital I/Os with monitoring of mid voltage analog signals. The NMUX1237 is specifically designed for applications that are sensitive to signal overshoot.

2. Features and benefits

- Integrated suppression circuit to minimize signal overshoot
- 1.8 V control logic thresholds across supply operating range
- Ioff circuitry
 - · Enables wider latitude for power sequencing considerations
 - Isolates backflow between supply rail and any biased digital/analog input when V_{CC} = 0 V
 - Prevents any biased digital/analog input from backpowering V_{CC} when $V_{CC} = 0 \text{ V}$
 - Analog switch path maintains isolation state
- Wide supply voltage range from 1.08 V to 5.5 V
- Very low ON resistance: 4 Ω
- Low supply current: 5 nA
- Rail-to-rail operation
- Bidirectional signal path
- Break-before-make switching
- ESD protection:
 - HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
 - CDM: ANSI/ESDA/JEDEC JS-002 class C2b exceeds 750 V
- Specified from -40 °C to +85 °C and from -40 °C to +125 °C

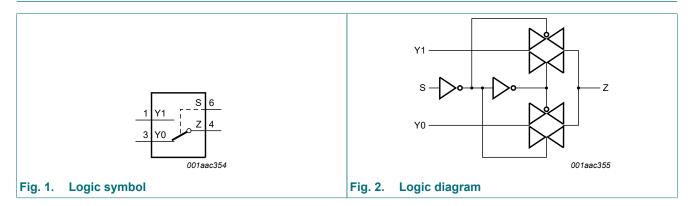
3. Ordering information

Table 1. Ordering information

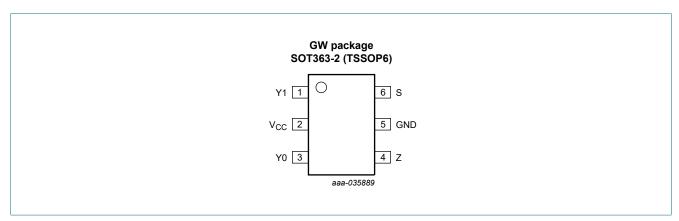
Type number	Package								
	Temperature range	Name	Description	Version					
NMUX1237GW	-40 °C to +125 °C	TSSOP6	plastic thin shrink small outline package; 6 leads; body width 1.25 mm	SOT363-2					

4. Marking

Table 2. Marking


Type number	Marking code[1]			
NMUX1237	M1			

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


2-channel analog multiplexer/demultiplexer

5. Functional diagram

6. Pinning information

6.1. Pinning

6.2. Pin description

Table 3. Pin description

Symbol	Pin	Description
Y1	1	independent input or output
V _{CC}	2	supply voltage
Y0	3	independent input or output
Z	4	common input or output
GND	5	ground (0 V)
S	6	select input; must not be left floating

2-channel analog multiplexer/demultiplexer

7. Functional description

7.1. Overview

The NMUX1237 is an analog switch with a single pole that can be configured to select between one of two possible connection paths (SPDT). Each analog connection path is bi-directional, with similar electrical characteristics independent of the direction of signal propagation.

7.2. Key features

7.2.1. Overshoot suppression

Traditional analog switches will demonstrate output overshoot when switching between different channel inputs. This can be a concern in applications that are sensitive to signal integrity and precision performance. The NMUX1237 has a multi-stage design to reduce overshoot due to charge injection of the switch itself as well as output channel characteristics such as capacitive load and board parasitics, particularly parasitic inductance.

7.2.2. 1.8 V compatible digital logic thresholds

It is common for modern systems to operate digital signals from lower voltage nodes such as 1.8 V, while operating their analog signals at higher voltage nodes such as 3.3 V or 5.0 V. To remove the requirements for a voltage translation device, the NMUX1237 digital control pin maintains 1.8 V logic compatible thresholds at higher operating voltages, up to 5.5 V.

7.2.3. loff protection circuitry of digital inputs

The NMUX1237 implements I_{off} protection circuitry on the digital control pins, isolating those pins from the internal circuits when the supply is unpowered (i.e., V_{CC} = 0 V). The ESD protection diodes on the digital input pins do not have a connection path to V_{CC} . If the digital input pins are biased when the V_{CC} pin is unpowered:

- 1. The high impedance of the digital inputs pins minimizes input current leakage.
- 2. The isolation between the digital input pins and the V_{CC} pin ensures no back-powering to the supply rail.

7.2.4. I_{off} protection circuitry of bi-directional analog inputs/outputs

The NMUX1237 implements I_{off} protection circuitry on the analog switch pins, isolating those pins from the internal circuits when the supply is unpowered (i.e., V_{CC} = 0 V). The ESD protection diodes on the analog switch pins do not have a connection path to V_{CC} . If the analog switch pins are biased when the V_{CC} pin is unpowered:

- 1. The high impedance of the analog pins minimizes input current leakage.
- The isolation between the analog pins and the V_{CC} pin ensures no back-powering to the supply rail.
- **3.** The high impedance of the analog switch path itself minimizes signal coupling across the switch.

Note: If the V_{CC} pin is powered up or down while there is an analog bias of pins Y0 or Y1, there will be a current draw into the respective Yx pin, and system design must ensure that the current draw is within the NMUX1237 recommended operating conditions.

2-channel analog multiplexer/demultiplexer

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level.

Input S	Channel on
L	Y0
Н	Y1

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage	pin: V _{CC}	-0.5	+7.0	V
VI	input voltage	pin S [1]	-0.5	+7.0	V
I _{IK}	input clamping current	$V_1 < -0.5 \text{ V or } V_1 > V_{CC} + 0.5 \text{ V}$ pin S	-30	+30	mA
I _{SK}	switch clamping current	$V_I < -0.5 \text{ V or } V_I > V_{CC} + 0.5 \text{ V}$ pins Yn, Z	-50	+50	mA
V _{SW}	switch voltage	enable and disable mode [2] pins Yn, Z	-0.5	V _{CC} + 0.5	V
I _{SW}	switch current	V_{SW} > -0.5 V or V_{SW} < V_{CC} + 0.5 V pins Yn, Z	-50	+50	mA
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	+150	°C

^[1] The minimum input voltage rating may be exceeded if the input current rating is observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		1.08	-	5.5	V
VI	input voltage	pin S	0	-	5.5	V
V _{SW}	switch voltage	enable and disable mode [1]	0	-	V _{CC}	V
		V _{CC} = 0 V	0	-	5.5	V
I _{SW}	switch current		-50		+50	mA
T _{amb}	ambient temperature		-40	-	+125	°C

^[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Yn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal Z, no GND current will flow from terminal Yn. In this case, there is no limit for the voltage drop across the switch.

^[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.

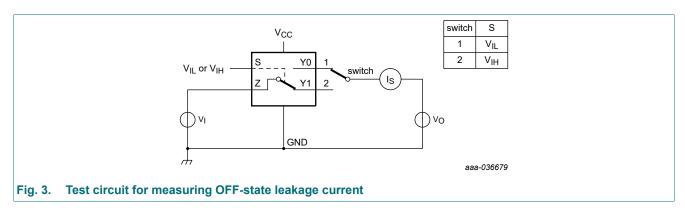
2-channel analog multiplexer/demultiplexer

10. Static characteristics

Table 7. Static characteristics

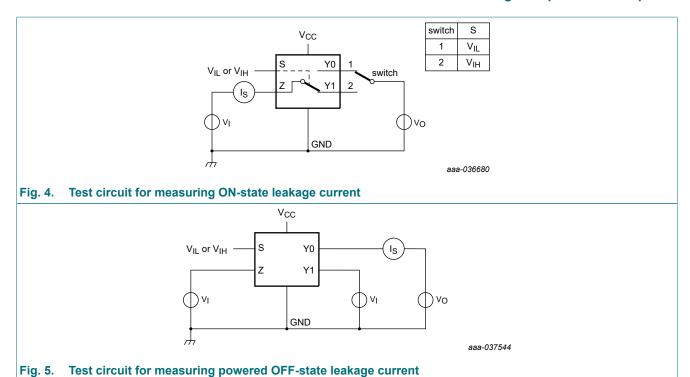
At recommended operating conditions; voltages are referenced to GND (ground 0 V).

Symbol	Parameter	Conditions	25 °C	-40 °C t	o +85 °C	-40 °C to	o +125 °C	Unit
			Typ [1]	Min	Max	Min	Max	
V _{IH}	HIGH-level	pin S						
	input voltage	V _{CC} = 5 V ± 10%	-	-	-	1.41	-	V
		V _{CC} = 3.3 V ± 10%	-	-	-	1.23	-	V
		V _{CC} = 1.8 V ± 10%	-	-	-	1.00	-	V
		V _{CC} = 1.2 V ± 10%	-	-	-	0.81	-	V
V _{IL}	LOW-level	pin S						
	input voltage	V _{CC} = 5 V ± 10%	-	-	-	-	0.78	V
		V _{CC} = 3.3 V ± 10%	-	-	-	-	0.65	V
		V _{CC} = 1.8 V ± 10%	-	-	-	-	0.53	V
		V _{CC} = 1.2 V ± 10%	-	-	-	-	0.36	V
l _l	input	pin S; V _I = 5.5 V or GND						
	leakage current	V _{CC} = 5 V ± 10%	±0.005	-	-	-1	1	μA
	Current	V _{CC} = 3.3 V ± 10%	±0.005	-	-	-1	1	μΑ
		V _{CC} = 1.8 V ± 10%	±0.005	-	-	-1	1	μA
		V _{CC} = 1.2 V ± 10%	±0.005	-	-	-1	1	μΑ
I _{P(OFF)}	powered	supply off, see Fig. 3						
	off leakage current	V _{CC} = 0 V; V _O = 0 V to 3.6 V, V _I = 0 V; V _O = 0, V _I = 0 V to 3.6 V	±0.01	-1	1	-5	5	μΑ
		$V_{CC} = 0 \text{ V};$ $V_{O} = 0 \text{ V to } 5.5 \text{ V}, V_{I} = 0 \text{ V};$ $V_{O} = 0, V_{I} = 0 \text{ V to } 5.5 \text{ V}$	±0.01	-4	4	-16	16	μA
I _{S(OFF)}	source off	switch off; see Fig. 3						
	leakage current	$V_{CC} = 5 \text{ V} + 10\%;$ $V_{O} = 4.5 \text{ V} \text{ and } V_{I} = 1.5 \text{ V};$ $V_{O} = 1.5 \text{ V} \text{ and } V_{I} = 4.5 \text{ V}$	±2	-55	55	-491	491	nA
		$V_{CC} = 3.3 \text{ V} + 10\%;$ $V_{O} = 3 \text{ V} \text{ and } V_{I} = 1 \text{ V};$ $V_{O} = 1 \text{ V} \text{ and } V_{I} = 3 \text{ V}$	±2	-31	31	-248	248	nA
		$V_{CC} = 1.8 \text{ V} + 10\%;$ $V_{O} = 1.8 \text{ V} \text{ and } V_{I} = 1 \text{ V};$ $V_{O} = 1 \text{ V} \text{ and } V_{I} = 1.8 \text{ V}$	±2	-64	64	-169	169	nA
		$V_{CC} = 1.2 \text{ V} + 10\%;$ $V_{O} = 1.2 \text{ V} \text{ and } V_{I} = 1 \text{ V};$ $V_{O} = 1 \text{ V} \text{ and } V_{I} = 1.2 \text{ V}$	±2	-33	33	-139	139	nA


Product data sheet

2-channel analog multiplexer/demultiplexer

Symbol	Parameter	Conditions	25 °C	-40 °C t	-40 °C to +85 °C		-40 °C to +125 °C	
			Typ [1]	Min	Max	Min	Max	
I _{S(ON)}	channel	switch on; see Fig. 4						
	on leakage current	V _{CC} = 5 V + 10%; V _O = V _I = 4.5 V or 1 V	±2	-157	157	-1088	1088	nA
		V _{CC} = 3.3 V + 10%; V _O = V _I = 3 V or 1 V	±2	-103	103	-547	547	nA
		V _{CC} = 1.8 V + 10%; V _O = V _I = 1.62 V or 1 V	±2	-75	75	-331	331	nA
		V _{CC} = 1.2 V + 10%; V _O = V _I = 1 V or 0.8 V	±2	-52	52	-260	260	nA
I _{D(ON)}	channel	switch on; see Fig. 4						
	on leakage current	V _{CC} = 5 V + 10%; V _O = V _I = 4.5 V or 1 V	±2	-157	157	-1088	1088	nA
		V _{CC} = 3.3 V + 10%; V _O = V _I = 3 V or 1 V	±2	-103	103	-547	547	nA
		V _{CC} = 1.8 V + 10%; V _O = V _I = 1.62 V or 1 V	±2	-75	75	-331	331	nA
		V _{CC} = 1.2 V + 10%; V _O = V _I = 1 V or 0.8 V	±2	-52	52	-260	260	nA
I _{CC}	supply	pin S; V _I = 5.5 V or GND						
	current	V _{CC} = 5 V + 10%	0.005	-	-	-	1.9	μA
		V _{CC} = 3.3 V + 10%	0.003	-	-	-	0.7	μA
		V _{CC} = 1.8 V + 10%	0.002	-	-	-	0.3	μΑ
		V _{CC} = 1.2 V + 10%	0.001	-	-	-	0.3	μΑ


^[1] Typical values are measured at T_{amb} = 25 °C, V_{CC} = 5.0 V, 3.3 V, 1.8 V, and 1.2 V

10.1. Test circuits

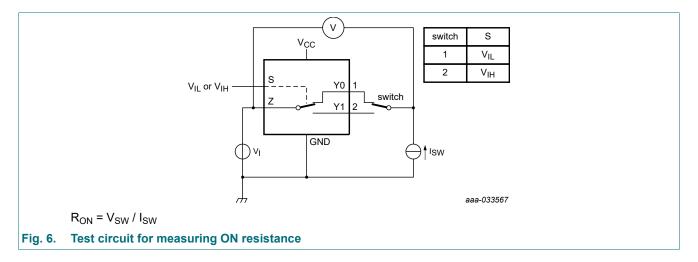
Product data sheet

2-channel analog multiplexer/demultiplexer

10.2. ON resistance

Table 8. ON resistance

At recommended operating conditions; voltages are referenced to GND (ground 0 V); for test circuit see Fig. 6.


Symbol	Parameter	Conditions	25 °C	-40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Typ [1]	Min	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	V_I = GND to V_{CC} ; I_{SW} = 10 mA; see Fig. 6						
		V _{CC} = 5 V ± 10%	4	-	9	-	9	Ω
		V _{CC} = 3.3 V ± 10%	7	-	13	-	14	Ω
		V _{CC} = 1.8 V ± 10%	32	-	68	-	68	Ω
		V _{CC} = 1.2 V ± 10%	68	-	100	-	100	Ω
ΔR _{ON}	ON resistance matching	V_I = GND to V_{CC} ; I_{SW} = 10 mA; see Fig. 6						
		V _{CC} = 5 V ± 10%	0.11	-	1	-	1	Ω
		V _{CC} = 3.3 V ± 10%	0.11	-	1	-	1	Ω
		V _{CC} = 1.8 V ± 10%	0.12	-	6	-	6	Ω
		V _{CC} = 1.2 V ± 10%	0.21	-	17	-	17	Ω
R _{ON(flat)}	ON resistance	$V_I = GND \text{ to } V_{CC}; I_{SW} = 10 \text{ mA}$ [2]						
	(flatness)	V _{CC} = 5 V ± 10%	1	-	3	-	3	Ω
		V _{CC} = 3.3 V ± 10%	3	-	7	-	7	Ω
		V _{CC} = 1.8 V ± 10%	26	-	62	-	62	Ω
		V _{CC} = 1.2 V ± 10%	58	-	88	-	88	Ω

NMUX1237

^[1] Typical values are measured at T_{amb} = 25 °C, V_{CC} = 5.0 V, 3.3 V, 1.8 V, 1.2 V [2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

2-channel analog multiplexer/demultiplexer

10.3. ON resistance test circuit

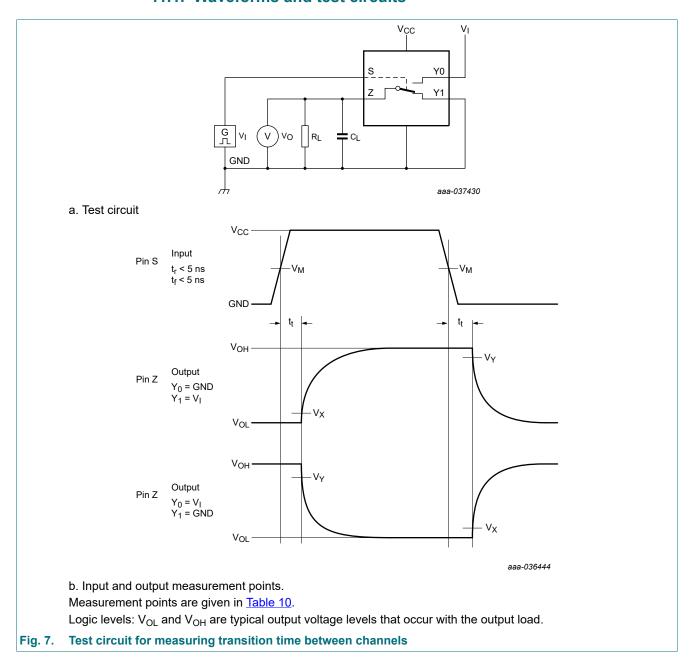
11. Dynamic characteristics

Table 9. Dynamic characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for test circuits see $\frac{\text{Fig. 7}}{\text{Fig. 12}}$.

Symbol	Parameter	Conditions	25 °C	-40 °C t	o +85 °C	-40 °C t	o +125 °C	Unit	
				Min	Max	Min	Max		
t _t	transition time	S to Z R _L = 200 Ω ; C _L = 15 pF							
	between channels	V _{CC} = 5 V ± 10%; V _I = 3 V	23	-	34	-	35	ns	
	CHAITICIS	V _{CC} = 3.3 V ± 10%; V _I = 2 V	43	-	63	-	65	ns	
		V _{CC} = 1.8 V ± 10%; V _I = 1 V	57	-	103	-	106	ns	
		V _{CC} = 1.2 V ± 10%; V _I = 1 V	163	-	505	-	505	ns	
t _{b-m}	break-	$R_L = 200 \Omega; C_L = 15 pF$							
	before-make time	V _{CC} = 5 V ± 10%; V _I = 3 V	211	10	-	10	-	ns	
		V _{CC} = 3.3 V ± 10%; V _I = 2 V	283	10	-	10	-	ns	
			V _{CC} = 1.8 V ± 10%; V _I = 1 V	321	10	-	10	-	ns
		V _{CC} = 1.2 V ± 10%; V _I = 1 V	1872	10	-	10	-	ns	
Q _{inj}	charge	$R_{gen} = 0 \Omega$; $C_L = 1 nF$							
	injection	$V_{CC} = 5 V \pm 10\%;$ $V_{gen} = 0.5 \times V_{CC}$	5	-	-	-	-	рС	
		$V_{CC} = 3.3 \text{ V} \pm 10\%;$ $V_{gen} = 0.5 \times V_{CC}$	4	-	-	-	-	рС	
		$V_{CC} = 1.8 \text{ V} \pm 10\%;$ $V_{gen} = 0.5 \times V_{CC}$	2	-	-	-	-	pC	
		$V_{CC} = 1.2 \text{ V} \pm 10\%;$ $V_{gen} = 0.5 \times V_{CC}$	2	-	-	-	-	рС	

2-channel analog multiplexer/demultiplexer


Symbol	Parameter	Conditions	25 °C	-40 °C t	o +85 °C	-40 °C to +125 °C		Unit
			Typ [1]	Min	Max	Min	Max	
α_{ISO}	isolation	$R_L = 50 \Omega$; $C_L = 5 pF$; $f = 1 MHz$						
	(OFF-state)	V _{CC} = 5 V ± 10%	-82	-	-	-	-	dB
		V _{CC} = 3.3 V ± 10%	-82	-	-	-	-	dB
		V _{CC} = 1.8 V ± 10%	-82	-	-	-	-	dB
		V _{CC} = 1.2 V ± 10%	-82	-	-	-	-	dB
		$R_L = 50 \Omega$; $C_L = 5 pF$; $f = 10 MHz$						
		V _{CC} = 5 V ± 10%	-62	-	-	-	-	dB
		V _{CC} = 3.3 V ± 10%	-62	-	-	-	-	dB
		V _{CC} = 1.8 V ± 10%	-61	-	-	-	-	dB
		V _{CC} = 1.2 V ± 10%	-61	-	-	-	-	dB
Xtalk	crosstalk	$R_L = 50 \Omega$; $C_L = 5 pF$; $f = 1 MHz$						
		V _{CC} = 5 V ± 10%	-77	-	-	-	-	dB
		V _{CC} = 3.3 V ± 10%	-77	-	-	-	-	dB
		V _{CC} = 1.8 V ± 10%	-78	-	-	-	-	dB
		V _{CC} = 1.2 V ± 10%	-82	-	-	-	-	dB
		$R_L = 50 \Omega$; $C_L = 5 pF$; $f = 10 MHz$						
		V _{CC} = 5 V ± 10%	-57	-	-	-	-	dB
		V _{CC} = 3.3 V ± 10%	-57	-	-	-	-	dB
		V _{CC} = 1.8 V ± 10%	-58	-	-	-	-	dB
		V _{CC} = 1.2 V ± 10%	-61	-	-	-	-	dB
BW	bandwidth	$R_L = 50 \Omega$; $C_L = 5 pF$						
		V _{CC} = 5 V ± 10%	196	-	-	-	-	MHz
		V _{CC} = 3.3 V ± 10%	179	-	-	-	-	MHz
		V _{CC} = 1.8 V ± 10%	119	-	-	-	-	MHz
		V _{CC} = 1.2 V ± 10%	90	-	-	-	-	MHz
Cı	input capacitance	pin S	2	-	-	-	4	pF
C _{S(OFF)}	OFF-state	f = 1 MHz						
	capacitance	V _{CC} = 5 V ± 10%	10	-	-	-	-	pF
		V _{CC} = 3.3 V ± 10%	11	-	-	-	-	pF
		V _{CC} = 1.8 V ± 10%	12	-	-	-	-	pF
		V _{CC} = 1.2 V ± 10%	12	-	-	-	-	pF
C _{S(ON)}	ON-state	f = 1 MHz						
	capacitance	V _{CC} = 5 V ± 10%	27	-	-	-	-	pF
		V _{CC} = 3.3 V ± 10%	30	-	-	-	-	pF
		V _{CC} = 1.8 V ± 10%	32	-	-	-	-	pF
		V _{CC} = 1.2 V ± 10%	27	-	-	-	-	pF
C _{D(ON)}	ON-state	f = 1 MHz						
•	capacitance	V _{CC} = 5 V ± 10%	27	-	-	-	-	pF
		V _{CC} = 3.3 V ± 10%	30	-	-	-	-	pF
		V _{CC} = 1.8 V ± 10%	32	-	-	-	-	pF
		V _{CC} = 1.2 V ± 10%	27	-	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C, V_{CC} = 5.0 V, 3.3 V, 1.8 V, and 1.2 V

NMUX1237

2-channel analog multiplexer/demultiplexer

11.1. Waveforms and test circuits

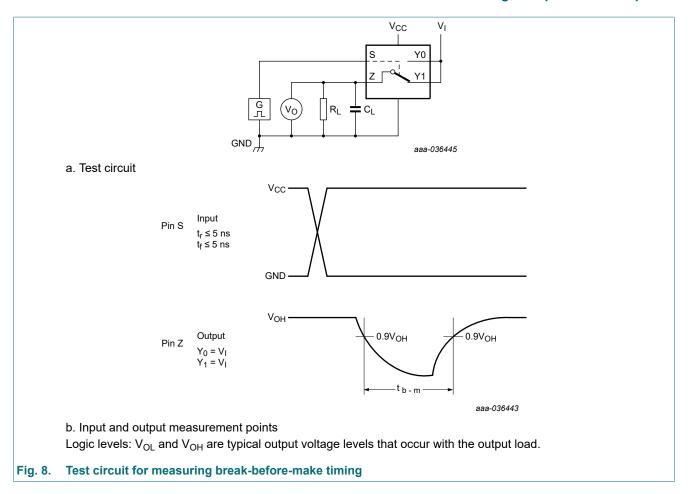
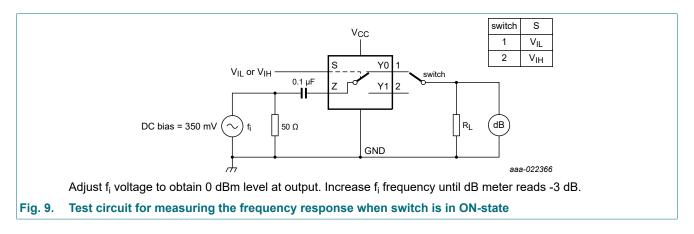
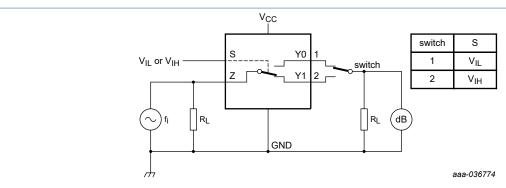


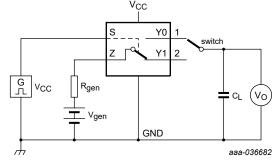
Table 10. Measurement points


Supply voltage	Input	Output				
V _{CC}	V _M	V _M	V _X	V _Y		
1.08 V to 5.5 V	0.5 × V _{CC}	0.5 × V _{CC}	V _{OL} + 10%	V _{OH} - 10%		

Product data sheet


2-channel analog multiplexer/demultiplexer

11.2. Test circuits



2-channel analog multiplexer/demultiplexer

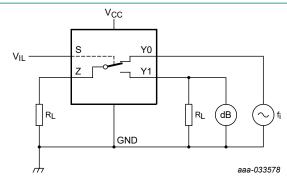
Adjust fi voltage to obtain 0 dBm level at input.

Fig. 10. Test circuit for measuring isolation (OFF-state)

logic (S) off on off

b. Input and output pulse definitions

a. Test circuit


 $Q_{ini} = \Delta V_O \times C_L;$

 ΔV_O = output voltage variation;

R_{qen} = generator resistance;

V_{gen} = generator voltage.

Fig. 11. Test circuit for measuring charge injection

 f_i voltage source: Z_O = 50 Ω . The f_i voltage level is set for R_L = 50 Ω ; DC = 0.5 V_{CC} ; AC = 0 dBm.

Fig. 12. Test circuit for measuring crosstalk between switches

2-channel analog multiplexer/demultiplexer

12. Applications

The NMUX1237 is a versatile CMOS bidirectional (SPDT) single-pole double-throw analog switch with digital control pins that support 1.8 V logic thresholds independent of the supply voltage. Supporting a wide supply voltage range of 1.08 V to 5.5 V, the device additionally features integrated circuitry to minimize analog signal overshoot when switching between channels. No power sequencing is required, as both digital and analog back-power protection are implemented.

12.1. Typical application schematic

A typical example is provided in Fig. 13. In this example, the NMUX1237 is used to control the input to the op-amp in the programmable low-side current sink application circuit. It allows for a fast disconnect when no current is required through the circuit's load. In this example, the power supplies for the analog switch and the op-amp circuit are activated before the rails of the DAC and MCU. As a result, the analog switch will by default connect the op-amp input to GND and prevent any current from flowing through the load before the DAC is properly initialized. Once the DAC is initialized, the NMUX1237 can then connect it to the op-amp input to programmatically change the current going through the load.

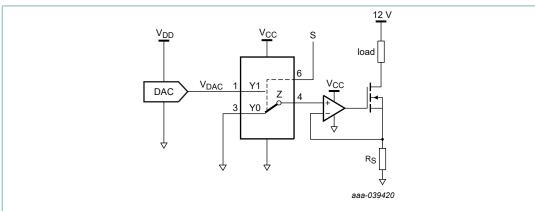


Fig. 13. Programmable low-side current sink circuit

Table 11. Design requirements

Condition	Value
I _{OUT} current range	0 to 200 mA
1.8 V control logic	
Supply voltage	5 V (1.08 V to 5.5 V supported)
Input analog signal range	0 V to V _{CC}
Ouput range of DAC (V _{ref})	4.096 V (DAC output 0V to 4.096 V)
Required overshoot	0 V (Ensures no predictable current across load)

Calculating R_S for maximum V_{DAC}/I_{OUT} value:

$$R_{\rm S} = \frac{V_{\rm DAC}}{I_{\rm OUT}} = \frac{4.096 \text{ V}}{200 \text{ mA}} \approx 20.5 \Omega \text{ (max)}$$
 (1)

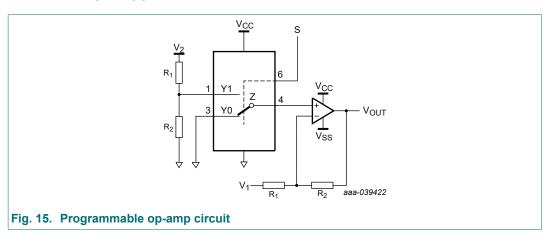
A rough estimate of the maximum supported resistive load can be calculated as:

$$R_{\text{LOAD(max)}} = \frac{V_{\text{CC}} - R_S I_{\text{OUT}}}{I_{\text{OUT}}} = \frac{12 \text{ V} - (20.5 \Omega)(0.2 \text{ A})}{0.2 \text{ A}} = 39.5 \Omega \text{ (max)}$$
 (2)

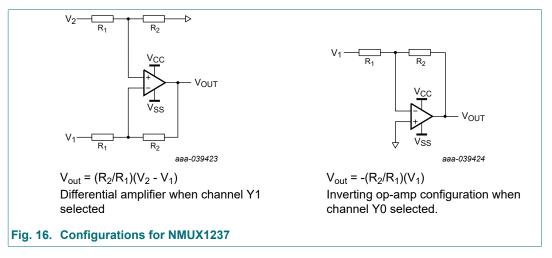
2-channel analog multiplexer/demultiplexer

To determine the true maximum load, the NMOS compliance voltage should either be measured or recorded from the datasheet.

$$R_{\text{LOAD(max)}} = \frac{V_{\text{CC}} - V_{\text{Compliance(NMOS)}} - R_{\text{S}} I_{\text{OUT}}}{I_{\text{OUT}}}$$
 (3)


12.2. Overshoot suppression

<u>Fig. 14</u> demonstrates the integrated suppression circuit that eliminates signal overshoot when changing between analog channels. In this example, the NMUX1237 is powered with a supply voltage of 5 V. The analog inputs Y0 and Y1 are biased with GND and 3.3 V, respectively. The S control pin switches the output between GND and 3.3 V, and output voltage is observed on pin Z.

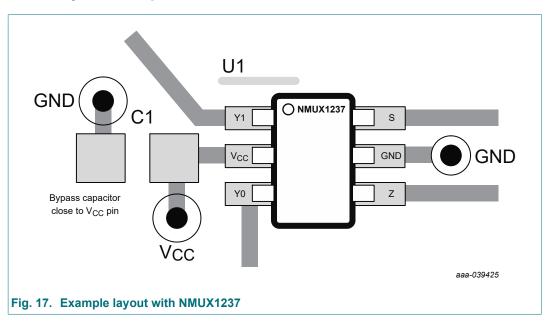


2-channel analog multiplexer/demultiplexer

12.3. Example application circuits

In the example in Fig. 15, an NMUX1237 is used to create a selectable op-amp circuit that enables two different configurations. When the channel path Y0 is connected, the circuit will function as an inverting op-amp configuration, while connecting the Y1 path will result in a differential amplifier configuration. The resulting circuits are further explained in Fig. 16

The design can be further improved by substituting a DAC output for V_2 . This would enable a programmable difference amplifier, with the resulting transfer function shown in Equation 4. The V_{DAC} voltage value would provide an offset for the inverted waveform.


$$V_{\text{OUT}} = \frac{(V_{\text{DAC}} - V_1) R_2}{R_1}$$
 (4)

where V_{DAC} is offset applied to inverted signal <u>Equation 4</u>.

15 / 20

2-channel analog multiplexer/demultiplexer

12.4. Layout example and recommendations

As with all board designs, proper layout techniques should be employed. Some quick good layout practices and considerations are listed below for quick reference.

- Ceramic capacitors with low ESR should be used to properly decouple or bypass power-supply pins. Ceramic capacitors with high temperature coefficients and low dissipation factors include X5R, X7R and NP0. The recommended minimum value is 0.1 μF.
- For improved noise suppression, additional bypass capacitors can be implemented. It is a common practice to use two different capacitor values to ensure proper filtering of both low-frequency and high-frequency transients. The smaller capacitor, typically in a 0402 package, is placed very near the device pin, while the larger capacitor is positioned farther away.
- To minimize coupling and improve performance all switching nets should travel across a uniform ground plane. Reducing crosstalk can also be achieved by separating traces with a small polygon ground plane.
- Net traces should only have serpentine or 45° bend. Sharper bends, such as 90° should be avoided.

2-channel analog multiplexer/demultiplexer

13. Package outline

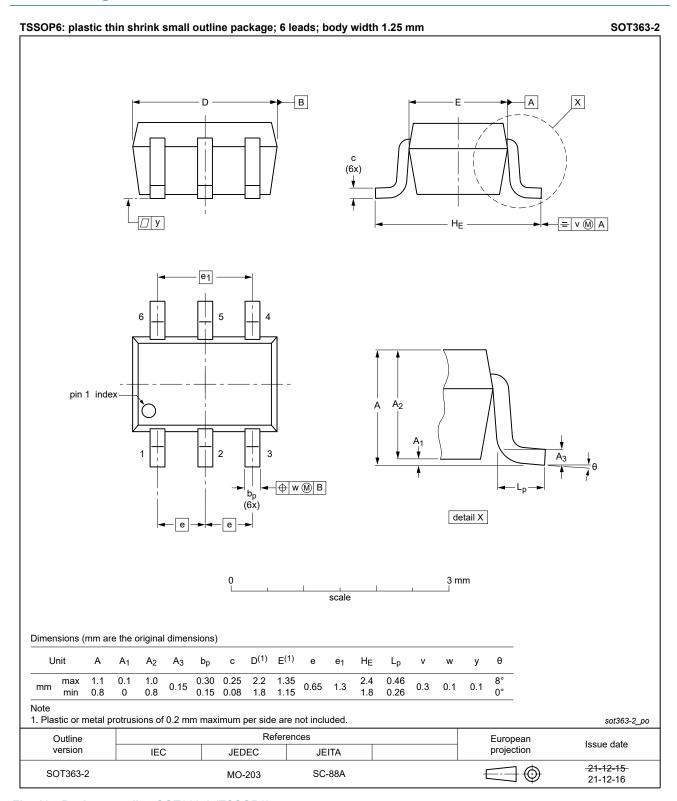


Fig. 18. Package outline SOT363-2 (TSSOP6)

2-channel analog multiplexer/demultiplexer

14. Abbreviations

Table 12. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model

15. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
NMUX1237 v.1	20240712	Product data sheet	-	-

16. Legal information

Data sheet status

Document status [1][2]	Product status [3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- Please consult the most recently issued document before initiating or completing a design.
- 2] The term 'short data sheet' is explained in section "Definitions".
- The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the internet at https://www.nexperia.com.

Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between Nexperia and its customer, unless Nexperia and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the Nexperia product is deemed to offer functions and qualities beyond those described in the Product data sheet.

Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. Nexperia takes no responsibility for the content in this document if provided by an information source outside of Nexperia.

In no event shall Nexperia be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, Nexperia's aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms and conditions of commercial sale of Nexperia.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an Nexperia product can reasonably be expected to result in personal

2-channel analog multiplexer/demultiplexer

injury, death or severe property or environmental damage. Nexperia and its suppliers accept no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using Nexperia products, and Nexperia accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the Nexperia product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

Nexperia does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using Nexperia products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). Nexperia does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. Nexperia hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of Nexperia products by sustained.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific Nexperia product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. Nexperia accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without Nexperia's warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond Nexperia's specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies Nexperia for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond Nexperia's standard warranty and Nexperia's product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

NMUX1237

All information provided in this document is subject to legal disclaimers

© Nexperia B.V. 2024. All rights reserved

2-channel analog multiplexer/demultiplexer

Contents

1. General description	1
2. Features and benefits	1
3. Ordering information	1
4. Marking	1
5. Functional diagram	2
6. Pinning information	2
6.1. Pinning	2
6.2. Pin description	2
7. Functional description	3
7.1. Overview	3
7.2. Key features	3
7.2.1. Overshoot suppression	3
7.2.2. 1.8 V compatible digital logic thresholds	3
7.2.3. I _{off} protection circuitry of digital inputs	3
7.2.4. l _{off} protection circuitry of bi-directional analog inputs/outputs	3
8. Limiting values	4
9. Recommended operating conditions	4
10. Static characteristics	5
10.1. Test circuits	6
10.2. ON resistance	7
10.3. ON resistance test circuit	8
11. Dynamic characteristics	8
11.1. Waveforms and test circuits	10
11.2. Test circuits	11
12. Applications	13
12.1. Typical application schematic	13
12.2. Overshoot suppression	14
12.3. Example application circuits	15
12.4. Layout example and recommendations	16
13. Package outline	17
14. Abbreviations	18
15. Revision history	18
16. Legal information	19

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 12 July 2024

[©] Nexperia B.V. 2024. All rights reserved